

POWER FACTOR COMPENSATION WITH 3 PHASE USES XL UNITS

TECHNICAL SPECIFICATIONS

USES MODEL	VOLTAGE	L1 AMP REACT	KVAR	KW
XL-R	120/240	5	1	.75 - 1.0
XL-1	120/240	13	2.5	1.2 - 1.7
XL-3Y 208	120/208	14	5	1.7 - 2.5
XL-3D 208	208	26	9	3.0 - 4.0
XL-3Y 240/250	120/240/250	16	6	3.0 - 4.0
XL-3D 240/250	240/250	28	10	3.5 - 4.5
XL-3Y 480	277/480	23	19	3.5 - 4.5
XL-3D 480	480	32	29	4.5 - 6.0
XL-3Y 600	347/600	27	32	4.5 - 6.0
XL-3D 600	600	39	44	6.0 - 7.0

L1 AMP REACTIVE IS MEASURED AMPERAGE ON THE L1 USES LEAD

KVAR (3-PHASE) = KILOVOLT (PHASE-TO-PHASE) x L1 AMP REACT x 1.73

Install USES units as close to inductive loads as possible. Match the KVAR of the individual units with these loads and have the units switched on and off with the loads. The total additional KVAR should be calculated from the Power Factor Improvement Table to bring the existing system power factor to the desired level.

Note: KW & KVAR values can change depending on the load characteristics.